eTHNU

Explore | Expand | Enrich

Web Technologies Test Projects

Ethnus
Mar 2025

-~

Explore | Expand | Enrich

Web Technologies Test Projects.........ccccceeiiiiiiiimmmmnsssss s 3
College LeVEl (2.5 NOUIS).......uuiiiiiiie ittt a e e e 3
State Level (8.5 NOUIS)......coo o 6
National Level (5 hours - SPA Frontend)...........cccccuuvuuiiiuiiiiiiiiiiiisiresreeereeeeeeeeeeeeeeeeeeeeeeeees 10

© Ethnus 2025 Page 2 www.ethnus.com

http://www.ethnus.com

QHQ

Web Technologies Test Projects

College Level (2.5 hours)

e Objective: Build a static, responsive, multi-section "Event Landing Page" using
semantic HTML, CSS for layout and styling (including Flexbox or Grid), and basic
JavaScript for simple interactivity.

e Scenario: "Innovate Startups” is hosting a launch event and needs a simple,
informative landing page. You need to create this page based on provided content
and a basic wireframe/description.

e Prerequisites:

o Text Editor (e.g., VS Code).
o Modern Web Browser (e.g., Chrome, Firefox) with Developer Tools.

o Provided assets:
m Text content for different sections (e.g., event_details. txt).
m A placeholder logo image (1ogo . png).
m A basic wireframe image or description (wireframe. jpg or
layout_guide.txt).
e Detailed Steps/Modules:

o Module 1: HTML Structure (Approx. 45 mins)

m 1.1. Create the main HTML file (index . html).

m 1.2. Set up the basic HTML document structure (<! DOCTYPE html>,
<html>, <head>, <body>). Include appropriate <meta> tags for
charset and viewport. Link a CSS file (e.g., style.css).

m 1.3. Using the provided text content and wireframe as a guide,
structure the <body> using semantic HTMLS5 tags (e.g., <header>,
<nav>, <main>, <section>, <article>, <footer>, <buttons>,
, <h1>-<h6>, <p>, , <1j_>)_

m 1.4. Create distinct sections for:

m Header (with logo and event title).

© Ethnus 2025 Page 3 www.ethnus.com

http://www.ethnus.com

-’

Explore | Expand | Enrich

m Navigation (simple links like Home, About, Schedule, Venue -
non-functional initially).

m Hero/Introduction section.

m About the Event section.

m Event Schedule section (use a list or simple table structure).

m Venue/Location section.

m Footer (with copyright info).

m 1.5. Ensure content is correctly placed within the semantic structure.

Use appropriate heading levels. Include the placeholder logo image
with an alt attribute.

o Module 2: CSS Styling & Layout (Approx. 75 mins)

m 2.1. Create the linked CSS file (style.css).

m 2.2. Apply basic resets or normalization if desired (optional).

m 2.3. Style the basic elements (body font, colors, background).

m 2.4. Implement the main page layout using CSS Flexbox or CSS Grid
based on the provided wireframe/guide. Ensure sections are visually
distinct.

m 2.5. Style the header, navigation, sections, and footer according to the
visual guide (or apply sensible styling if no strict guide is provided).
Focus on padding, margins, borders, colors, and typography.

m 2.6. Style interactive elements like navigation links (e.g., hover
effects).

m 2.7. Responsiveness: Add at least one CSS media query (e.g., for
screen widths below 768px) to adjust the layout for smaller screens
(e.g., stack columns, adjust font sizes, simplify navigation). Test using
browser developer tools.

o Module 3: Basic JavaScript Interactivity (Approx. 30 mins)

m 3.1. Create a JavaScript file (e.g., script. js) and link it at the
bottom of the <body> in index.html.

m 3.2. Add an event listener to a button (e.g., a "Toggle Schedule" button
you add in the HTML).

© Ethnus 2025 Page 4 www.ethnus.com

http://www.ethnus.com

ETH@
”

Explore | Expand | Enrich

m 3.3. When the button is clicked, toggle the visibility of the "Event
Schedule" section (e.g., by adding/removing a CSS class like .hidden
which has display: none;).

m 3.4. (Optional) Add smooth scrolling for the navigation links (if time
permits). Find navigation links, add event listeners, prevent default
jump, get target section ID, and use element.scrollIntoView({
behavior: 'smooth' });.

Deliverables:

o Submitthe index.html, style.css, script. js files, and any used assets
(logo.png).
o Verification involves opening index.html in a browser.
o Criteria:
m Correct semantic HTML structure.
m Layout matches wireframe/guide and uses Flexbox/Grid.
m Page is reasonably styled and visually organized.
m Page layout adapts correctly at smaller screen sizes (tested via dev
tools).
m The JavaScript toggle button correctly shows/hides the schedule

section.

© Ethnus 2025 Page 5 www.ethnus.com

http://www.ethnus.com

@4@

State Level (3.5 hours)

Objective: Build an interactive single-page application (SPA) feel for a "Movie Finder".

Fetch movie data asynchronously from a provided mock APl endpoint using

JavaScript, display it dynamically, implement client-side filtering/search, and use

Local Storage for a simple "favorites" feature.

Scenario: "Innovate Startups" wants a frontend prototype for their movie database

service. You need to build the interface that allows users to browse and filter movies
fetched from their API.

Prerequisites:

o

o

o

O

Text Editor (VS Code recommended).

Modern Web Browser with Developer Tools.

Provided Mock API Endpoint URL: A URL (e.g.,
https://api.example.com/movies or alocally hosted JSON file URL if
network access is restricted) that returns a JSON array of movie objects

when a GET request is made. Each movie object might look like: { "id": 1,

"title": "...", "genre": , 'description”:)
"posterUrl”: "..." }

Basic wireframe or layout description.

Detailed Steps/Modules:

o

Module 1: HTML Structure & CSS Layout (Approx. 45 mins)

m 1.1.Create index.html andlink style.cssand script.js.
m 1.2. Set up the basic HTML structure. Include:

m A header area.

m A filter/search area containing:

m Atextinput field for searching by title (<input
type="text" id="searchInput">).

m Adropdown (<select id="genreFilter">)for
filtering by genre (populate with placeholder or
dynamically later).

m A main content area (<main id="movielListContainer">)

where movie cards will be displayed.

© Ethnus 2025 Page 6 www.ethnus.com

http://www.ethnus.com

Explore | Expand | Enrich

m 1.3. Create basic CSSrules in style.css for layout (e.g., using
Flexbox/Grid for the main areas and the movie list), padding, margins,
and basic styling for the input/select elements. Style a basic "movie
card" structure (it will be empty initially).

m 1.4. Ensure the layout is responsive using media queries.

o Module 2: Fetching & Displaying API Data (Approx. 60 mins)

m 2.1.Inscript.js, write an asynchronous function (e.g.,
WorkspaceMovies) using the Workspace API to make a GET
request to the provided mock API endpoint URL.

m 2.2. Handle the response: parse the JSON data. Include basic error
handling (e.g., log errors to the console if the fetch fails).

m 2.3. Write a function (e.g., displayMovies(moviesArray)) that
takes an array of movie objects.

m 2.4 Inside displayMovies, clear the existing content of the
movielListContainer.

m 2.5. Loop through the moviesArray. For each movie object,
dynamically create HTML elements for a "movie card" (e.g., a <div>
containing an for the poster, <h3> for the title, <p> for
genre/description, and a "Favorite" button).

m 2.6. Populate the created elements with data from the movie object
(title, posterUrl, etc.). Remember to set src and alt forimages.

m 2.7. Append each created movie card element to the
movielListContainer.

m 2.8.CallWorkspaceMovies() when the page loads to initially
populate the list.

m 2.9. (Optional) Dynamically populate the genre filter dropdown
(<select>) with unique genres found in the fetched movie data.

o Module 3: Client-Side Search & Filtering (Approx. 60 mins)

m 3.1. Store the initially fetched movie data in a global variable (e.g.,

allMovies).

© Ethnus 2025 Page 7 www.ethnus.com

http://www.ethnus.com

-’

Explore | Expand | Enrich

3.2. Add an event listener to the search input (#searchInput) that
triggers on input or keyup.

3.3. Inside the event listener, get the current search term (lowercase).
Filter the allMovies array based on whether the movie title
(lowercase) includes the search term.

3.4. Add an event listener to the genre filter dropdown
(#genreFilter) that triggers on change.

3.5. Inside the event listener, get the selected genre. Filter the
allMovies array based on whether the movie genre matches the
selected genre (handle "All Genres" option if added).

3.6. Combine Filters: Modify the event listeners so that both search
term and selected genre are considered when filtering the al1Movies
array. Create a combined filtering function if needed.

3.7. After filtering, call the displayMovies() function, passing the
filtered array of movies to update the Ul. Ensure filtering happens

purely on the client side without re-fetching from the API.

o Module 4: Local Storage for Favorites (Approx. 30 mins)

© Ethnus 2025

4.1. When creating movie cards in displayMovies, add an event
listener to each "Favorite" button. Store the movie's unique id in a
data attribute (e.g., data-movie-id) on the button.

4.2. In the button's event listener:

m Getthe movieId from the data attribute.

m Retrieve the current list of favorite IDs from localStorage
(e.g., parse a JSON array stored under a key like
favoriteMovies). If nothing exists, start with an empty
array.

m Check if the movield is already in the favorites list.

m If not present, add it to the array. If present, optionally remove it
(toggle functionality).

m Save the updated favorites array back to localStorage

(stringify the array first).

Page 8 www.ethnus.com

http://www.ethnus.com

Deliverables:

o Submitthe index.html, style.css,script. jsfiles.

o Verification involves opening index.html in a browser.

Explore

m (Optional) Visually update the button/card (e.g., change button

text to "Unfavorite", add a CSS class) to indicate favorite

status. Check favorite status when initially displaying cards.

o Criteria:

© Ethnus 2025

Movie data is fetched from the provided API and displayed in cards.

Search input correctly filters the displayed movies by title in real-time.

Genre dropdown correctly filters the displayed movies by genre.

Search and genre filters work together correctly.

Clicking the "Favorite" button stores the movie ID in localStorage

(verifiable via browser dev tools -> Application -> Local Storage).

Page layout is responsive.

Page 9

www.ethnus.com

Expand

1| Enri

”

ch

http://www.ethnus.com

QHQ
Explore | Expand | Enrich

National Level (5 hours - SPA Frontend)

e Objective: Build a more complex Single Page Application (SPA) frontend for a
"Project Dashboard". Consume data from multiple provided mock API endpoints,
implement client-side routing (hash-based), manage application state effectively
(loading, errors), implement advanced form validation, and optionally visualize data
using a simple chart library. Emphasize clean code structure and accessibility.

e Scenario: "Innovate Startups" needs a dashboard interface for their project
management tool. You will build the frontend that interacts with their backend APIs
(mocked) to display projects, tasks, and allow adding new tasks.

e Prerequisites:

o

Text Editor (VS Code recommended).

o

Modern Web Browser with Developer Tools.
Provided Mock API Endpoint URLs:

o

m GET /api/projects: Returns array of projects { id, name,
description }.

m GET /api/projects/{projectId}/tasks: Returns array of tasks
for a specific project { id, title, status ('Pending', 'In
Progress', 'Completed'), projectId }.

m POST /api/tasks:Accepts a new task object { title, status:
'"Pending', projectId },returns the created task object with a

new id. (Mock will just echo back with a dummy ID).

o

(Optional) CDN link for a simple charting library like Chart.js.

o

Basic Ul mockups or description of required views/components.

e Detailed Steps/Modules:

o Module 1: Project Setup & Client-Side Routing (Approx. 60 mins)

m 1.1. Create index.html (SPA shell), style.css, script.js.
m 1.2. Design the HTML shell (index . htm1) with a main content area
(<div id="app">) where different "views" will be rendered

dynamically by JavaScript. Include placeholders for header/navigation

if needed.

© Ethnus 2025 Page 10 www.ethnus.com

http://www.ethnus.com

ETH@
_ rs

m 1.3.Inscript.js, implement a simple hash-based router:

m Listen for hashchange event on the window.

m Listen for the initial DOMContentLoaded event.

m Create a function (e.g., handleRouteChange) that reads the
location.hash (e.g. # #projects,
#project/123/tasks, #addTask/123).

m Based on the hash, determine which "view" function to call
(e.g., renderProjectList(),
renderTaskList(projectId),
renderAddTaskForm(projectId)).

m Implement basic functions (stubs for now) for rendering each
view, which will clear the #app div and add the appropriate
content.

m Ensure navigation links (if any) use hash paths (e.g., Projects).

o Module 2: Project List View & State Management (Approx. 75 mins)

m 2.1.Implement the renderProjectList () function.

m 2.2 Inside it, display a loading indicator in the #app div.

m 2.3.UseWorkspace to call the provided GET /api/projects
endpoint.

m 2.4. Handle application state:

m On success: Store the fetched projects array. Remove loading
indicator. Dynamically render the list of projects (e.g., as
clickable links/cards showing name and description). Each
project link should point to its task view hash (e.g.,
#project/{id}/tasks).

m On failure: Remove loading indicator. Display a user-friendly
error message in the #app div.

m 2.5. Structure your JavaScript code logically (e.g., separate functions
for API calls, rendering, state management variables).

2.6. Style the project list and loading/error states using CSS.

© Ethnus 2025 Page 11 www.ethnus.com

http://www.ethnus.com

ETH@
-~
e | Expand | Enrich

o Module 3: Task List View (Approx. 75 mins)

m 3.1.Implement the renderTaskList(projectId) function. It
receives the projectId from the router.

m 3.2. Display loading state.

m 3.3. Fetch tasks using the provided GET
/api/projects/{projectId}/tasks endpoint (substitute the
actual projectId).

m 3.4. Handle loading, success, and error states similarly to the project
list view.

m 3.5. On success, display the list of tasks for the specific project. Show
task title and status. Maybe use different styling based on status.

m 3.6. Include a button/link within this view that navigates to the "Add
Task" view for the current project (e.g., linking to
#addTask/{projectId}).

m 3.7. Add a "Back to Projects” link ().

m 3.8. Style the task list appropriately.

o Module 4: Add Task Form & Validation (Approx. 75 mins)

m 4.1. Implement the renderAddTaskForm(projectId) function.
m 4.2. Render an HTML form within the #app div. The form should have:
m Aninput field for the task title (<input type="text"
id="taskTitle" required>).
m A hidden input or way to associate the projectId.
m A submit button.
m A '"Cancel" link/button navigating back to the task list
(#project/{projectId}/tasks).
m 4.3. Add an event listener to the form's submit event. Prevent the
default form submission.
m 4.4 Client-Side Validation: Before submitting, validate the task title
input (e.g., ensure it's not empty, maybe minimum length). Display
clear validation error messages near the input field if invalid, and

prevent submission.

© Ethnus 2025 Page 12 www.ethnus.com

http://www.ethnus.com

%—1@

m 4.5 If validation passes:

m Construct the new task object: { title:
taskTitleValue, status: 'Pending', projectId:
projectId }.

m Disable the submit button and show a submitting/loading
indicator.

m Use Workspace to make a POST request to the provided
/api/tasks endpoint, sending the new task object in the
request body (as JSON). Set appropriate headers
(Content-Type: application/json).

m Handle the response:

m Onsuccess (e.g., 201 Created): Navigate the user back
to the task list view for that project (Location.hash
= '"#project/{projectId}/tasks"). The task list
should re-fetch to show the new task.

m On failure: Display an error message to the user.
Re-enable the submit button.

o Module 5: (Optional) Data Visualization & Accessibility (Approx. 60 mins)

m 5.1. Charting: If Chart.js CDN link is provided/allowed:

m Inthe Task List view (renderTaskList), after fetching tasks,
calculate the count of tasks per status ('Pending’, 'In Progress,
'‘Completed).

m Add a <canvas> element to the HTML structure for this view.

m Use Chart.js to render a simple pie or bar chart showing the
task status distribution for the current project.

m 5.2. Accessibility Review: Review your HTML structure. Ensure:

m Semantic elements are used correctly.

m Images have meaningful alt attributes.

m Form inputs have associated <label> elements.

m Interactive elements (buttons, links) are keyboard accessible.

© Ethnus 2025 Page 13 www.ethnus.com

http://www.ethnus.com

ETH@
-~

Explore | Expand | Enrich

m (Advanced) Consider adding basic ARIA attributes if needed
for dynamically updated regions (e.g., aria-1ive for error
messages).

e Deliverables:

o Submitthe index.html, style.css,script. jsfiles.
o Verification involves opening index.html in a browser and testing the SPA
functionality.
o Criteria:
m Client-side routing correctly displays different views based on URL
hash.
m Project list is fetched and displayed correctly, with links working.
m Task list for a selected project is fetched and displayed correctly.
m Loading and error states are handled gracefully for API calls.
m Add Task form includes client-side validation.
m Successfully adding a task makes a POST request and redirects back
to the task list (new task should appear on refresh/refetch).
m Code is well-structured and readable.
m (If attempted) Chart displays task status distribution correctly.
m Basic accessibility principles are followed in the HTML structure.

m Layoutis responsive.

— End of Document -

© Ethnus 2025 Page 14 www.ethnus.com

http://www.ethnus.com

	
	
	
	
	Web Technologies Test Projects
	Web Technologies Test Projects
	College Level (2.5 hours)
	
	State Level (3.5 hours)
	
	National Level (5 hours - SPA Frontend)

