

IT Software Solutions for

Business (ITSSB)​

Test Projects

Ethnus​
Mar 2025

ITSSB Test Projects... 3
College Level (2.5 hours)... 3
State Level (3.5 hours)... 8
National Level (5 hours)... 12

© Ethnus 2025​ ​ ​ ​ Page 2​ ​ ​ ​ www.ethnus.com

http://www.ethnus.com

ITSSB Test Projects

College Level (2.5 hours)

●​ Objective: Create a simple .NET Windows Forms application to perform basic Create,

Read, Update, and Delete (CRUD) operations on a single database table (e.g.,

'Products').

●​ Scenario: "Innovate Startups" needs a very basic tool for internal staff to manage

their initial product list.

●​ Prerequisites:

○​ Windows PC with Visual Studio (Community Edition sufficient) and .NET

Desktop Development workload installed.

○​ SQL Server Express LocalDB (usually installed with VS) OR SQLite and DB

Browser for SQLite.

○​ SQL Server Management Studio (SSMS) if using LocalDB.

○​ Provided SQL script: college_schema.sql (Creates a simple database like

InnovateDB_College and a Products table with columns ProductID

(int, PK), ProductName (varchar), Price (decimal), StockQuantity (int).

Includes sample INSERT statements).

●​ Detailed Steps/Modules:​

○​ Module 1: Database Setup (Approx. 30 mins)​

■​ 1.1. If using SQL Server LocalDB: Open SSMS, connect to

(localdb)\MSSQLLocalDB. Create a new database named

InnovateDB_College. Open the provided college_schema.sql

file and execute it against the InnovateDB_College database to

create the Products table and insert sample data.

■​ 1.2. If using SQLite: Use DB Browser for SQLite to create a new

database file (e.g., InnovateDB_College.sqlite). Open the

college_schema.sql file (it might need slight syntax adjustments

for SQLite - e.g., INTEGER PRIMARY KEY instead of INT IDENTITY

PRIMARY KEY) and execute it to create the table and data. Place the

© Ethnus 2025​ ​ ​ ​ Page 3​ ​ ​ ​ www.ethnus.com

http://www.ethnus.com

.sqlite file in a known location accessible by your application (e.g.,

near the executable).

■​ 1.3. Verify: Browse the Products table using SSMS or DB Browser to

ensure the table exists and contains the sample data. Note the

connection details (Server name/DB name for LocalDB, or the full path

to the .sqlite file).

○​ Module 2: Windows Forms UI Design (Approx. 45 mins)​

■​ 2.1. Create a new C# Windows Forms Application project in Visual

Studio (e.g., InnovateProductManager).

■​ 2.2. Design the main form (Form1.cs or rename it). Add the following

controls from the Toolbox:

■​ Labels and TextBoxes for ProductID (read-only),

ProductName, Price, StockQuantity. Name the

TextBoxes appropriately (e.g., txtProductID,

txtProductName, txtPrice, txtStockQuantity).

■​ Buttons for "Load Products", "Add New", "Update Selected",

"Delete Selected". Name them (e.g., btnLoad, btnAdd,

btnUpdate, btnDelete).

■​ A DataGridView control to display the list of products. Name

it dgvProducts. Configure its columns later or allow

auto-generation.

○​ Module 3: Database Connection & Read Operation (Approx. 45 mins)​

■​ 3.1. Connection String: Define the database connection string in your

C# code (or App.config).

■​ LocalDB Example:

Server=(localdb)\\MSSQLLocalDB;Database=Innova

teDB_College;Integrated Security=True; (or

Trusted_Connection=True;)

■​ SQLite Example: Data

Source=C:\path\to\your\InnovateDB_College.sqli

te;Version=3;

© Ethnus 2025​ ​ ​ ​ Page 4​ ​ ​ ​ www.ethnus.com

http://www.ethnus.com

■​ 3.2. Load Products Logic: Create an event handler for the btnLoad

button's Click event.

■​ 3.3. Inside the handler, write ADO.NET code (using

System.Data.SqlClient for SQL Server or

System.Data.SQLite for SQLite - add NuGet package if needed):

■​ Create a SqlConnection / SQLiteConnection object using

the connection string.

■​ Create a SqlCommand / SQLiteCommand with the SQL query:

SELECT ProductID, ProductName, Price,

StockQuantity FROM Products.

■​ Create a SqlDataAdapter / SQLiteDataAdapter and a

DataTable.

■​ Open the connection, fill the DataTable using the adapter,

and close the connection (ideally using using statements for

connection and command objects).

■​ Set the DataSource property of the dgvProducts

DataGridView to the filled DataTable.

■​ Make the ProductID column in the DataGridView read-only.

○​ Module 4: Create, Update, Delete Operations (Approx. 60 mins)​

■​ 4.1. Display Selected Product: Add an event handler for the

dgvProducts's SelectionChanged or CellClick event. When a

row is selected, populate the TextBoxes (txtProductName,

txtPrice, txtStockQuantity, txtProductID) with the data from

the selected row. Disable txtProductID.

■​ 4.2. Add New Logic: Create an event handler for btnAdd.

■​ Read values from txtProductName, txtPrice,

txtStockQuantity. Perform basic validation (e.g., ensure

price/quantity are valid numbers).

■​ Create a SQL INSERT command with parameters (INSERT

INTO Products (ProductName, Price,

StockQuantity) VALUES (@Name, @Price, @Qty)).

© Ethnus 2025​ ​ ​ ​ Page 5​ ​ ​ ​ www.ethnus.com

http://www.ethnus.com

■​ Create connection and command objects. Add parameters

(cmd.Parameters.AddWithValue(...)).

■​ Open connection, execute the command

(cmd.ExecuteNonQuery()), close connection.

■​ Refresh the DataGridView by calling the btnLoad's click

handler logic again. Add basic error handling (e.g.,

try-catch).

■​ 4.3. Update Selected Logic: Create an event handler for btnUpdate.

■​ Read values from all TextBoxes, including txtProductID.

Validate input.

■​ Create a SQL UPDATE command with parameters (UPDATE

Products SET ProductName = @Name, Price =

@Price, StockQuantity = @Qty WHERE ProductID =

@ID).

■​ Create connection, command, add parameters (including @ID

from txtProductID).

■​ Execute the command and refresh the grid. Handle errors.

Ensure a product is selected first.

■​ 4.4. Delete Selected Logic: Create an event handler for btnDelete.

■​ Get the ProductID from txtProductID (or the selected grid

row). Add a confirmation message box

(MessageBox.Show("Are you sure?", "Confirm

Delete", MessageBoxButtons.YesNo)).

■​ If confirmed 'Yes', create a SQL DELETE command (DELETE

FROM Products WHERE ProductID = @ID).

■​ Create connection, command, add @ID parameter.

■​ Execute and refresh the grid. Handle errors. Ensure a product

is selected.

●​ Deliverables:​

○​ Submit the complete Visual Studio project folder (including .sln, .csproj,

.cs, .designer.cs files, and the .sqlite file if used).

© Ethnus 2025​ ​ ​ ​ Page 6​ ​ ​ ​ www.ethnus.com

http://www.ethnus.com

○​ OR Submit the compiled executable along with any required files (like the

.sqlite DB).

●​ Verification:

○​ Run the application.

○​ Verify "Load Products" displays initial data in the grid.

○​ Verify selecting a row populates the text boxes.

○​ Verify "Add New" inserts a new product into the database and grid.

○​ Verify "Update Selected" modifies the product details in the database and

grid.

○​ Verify "Delete Selected" removes the product after confirmation.

© Ethnus 2025​ ​ ​ ​ Page 7​ ​ ​ ​ www.ethnus.com

http://www.ethnus.com

State Level (3.5 hours)

●​ Objective: Build a .NET WinForms application that manages related data from two

database tables (e.g., 'Customers' and 'Orders'), implements data validation, and

displays simple related information.

●​ Scenario: "Innovate Startups" needs a tool to view customer information and their

associated orders. Basic data entry validation is required.

●​ Prerequisites:

○​ Same as College Level (VS, .NET, DB engine, SSMS/DB Browser).

○​ Provided SQL script: state_schema.sql (Creates tables like Customers

(CustomerID, Name, Email) and Orders (OrderID, CustomerID (FK),

OrderDate, Amount). Includes sample data and foreign key relationship).

●​ Detailed Steps/Modules:​

○​ Module 1: Database Setup & Project Structure (Approx. 30 mins)​

■​ 1.1. Set up the database (InnovateDB_State) using

state_schema.sql (similar to College Step 1). Verify tables

(Customers, Orders) and the foreign key relationship exist. Note

connection details.

■​ 1.2. Create a new C# Windows Forms Application project (e.g.,

InnovateOrderViewer).

○​ Module 2: UI Design for Related Data (Approx. 60 mins)​

■​ 2.1. Design the main form. Consider using:

■​ A ComboBox or ListBox control (cmbCustomers or

lstCustomers) to display customer names.

■​ A DataGridView (dgvOrders) to display orders for the

selected customer.

■​ TextBoxes (potentially read-only) to display details of the

selected customer (txtCustomerID, txtCustomerName,

txtCustomerEmail).

© Ethnus 2025​ ​ ​ ​ Page 8​ ​ ​ ​ www.ethnus.com

http://www.ethnus.com

■​ TextBoxes/DateTimePicker for adding/editing Order details

(txtOrderID, dtpOrderDate, txtOrderAmount). Make

txtOrderID read-only.

■​ Buttons like "Load Customers", "Add Order", "Update Order",

"Delete Order".

■​ 2.2. (Alternative UI): Use a TabControl with two tabs: "Customers"

(showing customer grid/details) and "Orders" (showing order

grid/details, perhaps filterable by customer). Choose one UI approach.

○​ Module 3: Displaying Related Data (Approx. 60 mins)​

■​ 3.1. Load Customers: Implement the "Load Customers" button logic.

Fetch data from the Customers table (SELECT CustomerID, Name

FROM Customers ORDER BY Name) and populate the

cmbCustomers ComboBox (setting DisplayMember to "Name" and

ValueMember to "CustomerID") or lstCustomers ListBox.

■​ 3.2. Display Customer Details: Add an event handler for the

cmbCustomers SelectedIndexChanged (or lstCustomers

SelectedIndexChanged) event. When a customer is selected:

■​ Get the selected CustomerID (from SelectedValue).

■​ Fetch the full details for that customer (SELECT Name,

Email FROM Customers WHERE CustomerID = @ID).

■​ Display the details in the corresponding TextBoxes

(txtCustomerName, txtCustomerEmail). Store the

selected CustomerID (e.g., in txtCustomerID or a variable).

■​ Crucially: Trigger the logic to load orders for this selected

customer (call the function from step 3.3).

■​ 3.3. Load Orders for Selected Customer: Create a function

LoadOrders(int customerId) that:

■​ Takes customerId as input.

■​ Fetches orders for that customer (SELECT OrderID,

OrderDate, Amount FROM Orders WHERE CustomerID

= @CustID). Use parameters.

© Ethnus 2025​ ​ ​ ​ Page 9​ ​ ​ ​ www.ethnus.com

http://www.ethnus.com

■​ Populates the dgvOrders DataGridView with the results. Clear

previous orders first. Handle the case where a customer has

no orders.

○​ Module 4: Order Management & Data Validation (Approx. 75 mins)​

■​ 4.1. Display Selected Order: Add SelectionChanged event handler

for dgvOrders. Populate the order detail controls (txtOrderID,

dtpOrderDate, txtOrderAmount) when an order row is selected.

■​ 4.2. Add New Order: Implement btnAddOrder logic.

■​ Ensure a customer is selected first (check

cmbCustomers.SelectedValue).

■​ Read OrderDate and Amount from controls.

■​ Data Validation: Before saving, validate the inputs:

■​ Ensure Amount is a valid decimal number and perhaps

> 0.

■​ Ensure OrderDate is a valid date.

■​ Display specific, user-friendly error messages if

validation fails (e.g., using MessageBox.Show or

ErrorProvider control). Prevent saving if invalid.

■​ If valid, perform INSERT INTO Orders (CustomerID,

OrderDate, Amount) VALUES (@CustID, @Date,

@Amount). Use parameters.

■​ Refresh the dgvOrders for the current customer after insert.

■​ 4.3. Update/Delete Order: Implement btnUpdateOrder and

btnDeleteOrder logic similar to College level (using

UPDATE...WHERE OrderID = @OrderID and DELETE...WHERE

OrderID = @OrderID), ensuring an order is selected. Include input

validation for Update. Refresh the dgvOrders.

■​ 4.4. Simple Reporting Element: Add a Label (lblTotalAmount) that

displays the sum of the 'Amount' for the currently displayed orders in

dgvOrders. Update this label whenever orders are loaded or

modified. Loop through the DataTable or DataGridView rows to

calculate the sum.

© Ethnus 2025​ ​ ​ ​ Page 10​ ​ ​ ​ www.ethnus.com

http://www.ethnus.com

●​ Deliverables:​

○​ Submit the complete Visual Studio project folder OR compiled executable +

necessary files.

●​ Verification:

○​ Run the application.

○​ Verify customers load correctly.

○​ Verify selecting a customer displays their details and filters the orders shown

in the grid.

○​ Verify adding a new order fails with a clear message if validation rules (e.g.,

non-numeric amount) are broken.

○​ Verify adding/updating/deleting orders works correctly and updates the grid.

○​ Verify the total amount label updates correctly when the displayed orders

change.

© Ethnus 2025​ ​ ​ ​ Page 11​ ​ ​ ​ www.ethnus.com

http://www.ethnus.com

National Level (5 hours)

●​ Objective: Develop a more robust .NET application managing multiple related tables

(e.g., 'Suppliers', 'Products', 'InventoryTransactions') with search/filtering, basic

transaction handling, potential use of a simple Data Access Layer pattern, and data

export functionality.

●​ Scenario: "Innovate Startups" needs an inventory management tool to track products,

suppliers, and stock movements (receiving stock, shipping stock). Data integrity and

basic reporting are important.

●​ Prerequisites:

○​ Same as State Level (VS, .NET, DB engine, SSMS/DB Browser).

○​ Provided SQL script: national_schema.sql (Creates tables like

Suppliers (SupplierID, Name), Products (ProductID, Name,

SupplierID (FK), CurrentStock), InventoryTransactions

(TransactionID, ProductID (FK), ChangeQuantity (positive for

received, negative for shipped), TransactionDate). Includes sample data

and relationships).

●​ Detailed Steps/Modules:​

○​ Module 1: Database Setup & Project Structure (Approx. 30 mins)​

■​ 1.1. Set up the database (InnovateDB_National) using

national_schema.sql. Verify tables and relationships. Note

connection details.

■​ 1.2. Create a new C# Windows Forms Application project (e.g.,

InnovateInventory).

■​ 1.3. (Optional) Data Access Layer (DAL): Create separate C# classes

for handling database interactions (e.g., SupplierRepository.cs,

ProductRepository.cs, InventoryRepository.cs). These

classes would contain the ADO.NET code (connection, command, data

retrieval/modification logic) encapsulated in methods (e.g.,

GetAllSuppliers(), GetProductsBySupplier(int

supplierId), AddInventoryTransaction(...)). The UI forms

© Ethnus 2025​ ​ ​ ​ Page 12​ ​ ​ ​ www.ethnus.com

http://www.ethnus.com

will call methods in these repository classes instead of having raw

ADO.NET code directly in the form's code-behind. If DAL not taught,

keep ADO.NET code in forms but aim for cleaner separation.

○​ Module 2: UI Design - Multi-View & Search (Approx. 75 mins)​

■​ 2.1. Design the main UI, likely using a TabControl or separate

forms/panels for different functions:

■​ Suppliers View: Grid to display suppliers. Fields/Buttons to

add/edit suppliers.

■​ Products View: Grid to display products. ComboBox to filter by

Supplier. TextBox for searching product name. Fields/Buttons

to add/edit products (include ComboBox to select Supplier).

Display CurrentStock (read-only here).

■​ Inventory Transactions View: Grid to display transaction

history. Fields/Controls to record a new transaction

(ComboBox to select Product, NumericUpDown for Quantity,

RadioButtons/ComboBox for Type 'Receive'/'Ship', Button to

'Record Transaction').

○​ Module 3: Implementing Views & Relationships (Approx. 90 mins)​

■​ 3.1. Implement the Suppliers View with basic CRUD functionality for

the Suppliers table (similar to College level but using DAL methods

if implemented).

■​ 3.2. Implement the Products View:

■​ Load Suppliers into the filter ComboBox.

■​ Implement filtering: When supplier filter or search text

changes, fetch and display matching products in the grid (e.g.,

SELECT ... FROM Products WHERE (@SupplierID =

0 OR SupplierID = @SupplierID) AND ProductName

LIKE @SearchText). Use parameters. Remember to handle

the "All Suppliers" case (e.g., pass 0 or null for

@SupplierID).

© Ethnus 2025​ ​ ​ ​ Page 13​ ​ ​ ​ www.ethnus.com

http://www.ethnus.com

■​ Implement Add/Edit Product functionality, ensuring the correct

SupplierID (from a ComboBox populated with Suppliers) is

saved. CurrentStock is not directly edited here.

■​ 3.3. Implement the Inventory Transactions View (Display only for

now): Load Products into the 'Select Product' ComboBox. Display

transaction history in the grid, perhaps join with Products table to

show Product Name (SELECT T.*, P.ProductName FROM

InventoryTransactions T JOIN Products P ON

T.ProductID = P.ProductID ORDER BY TransactionDate

DESC).

○​ Module 4: Transaction Handling & Stock Update (Approx. 75 mins)​

■​ 4.1. Implement the "Record Transaction" button logic in the Inventory

Transactions View.

■​ 4.2. Get selected ProductID, Quantity, and TransactionType

('Receive'/'Ship'). Validate inputs.

■​ 4.3. Transaction Logic: This involves two steps that should succeed or

fail together:

■​ Step A: Insert a new record into the

InventoryTransactions table (Quantity is positive for

Receive, negative for Ship).

■​ Step B: Update the CurrentStock in the Products table

accordingly (UPDATE Products SET CurrentStock =

CurrentStock + @Change WHERE ProductID =

@ProductID). @Change would be the positive or negative

quantity.

■​ 4.4. Implement using ADO.NET Transaction:

■​ Open a single SqlConnection/SQLiteConnection.

■​ Begin a transaction (SqlTransaction tx =

conn.BeginTransaction(); / SQLiteTransaction tx

= conn.BeginTransaction();).

© Ethnus 2025​ ​ ​ ​ Page 14​ ​ ​ ​ www.ethnus.com

http://www.ethnus.com

■​ Create and execute the INSERT command (Step A),

associating it with the transaction (cmd.Transaction =

tx;).

■​ Create and execute the UPDATE command (Step B),

associating it with the transaction.

■​ If both commands execute without error, commit the

transaction (tx.Commit();).

■​ Crucially: Wrap the execution in a try-catch block. If any

error occurs during execution, rollback the transaction

(tx.Rollback();) and show an error message.

■​ Ensure the connection is closed properly in a finally block

or using using statements.

■​ 4.5. Refresh the transactions grid and potentially update the displayed

stock level in the Products view if it's visible.

○​ Module 5: Simple Data Export (Approx. 30 mins)​

■​ 5.1. In the Products View, add an "Export Products to CSV" button

(btnExport).

■​ 5.2. When clicked, fetch the currently displayed/filtered product data

from the Products table (use the same logic/query as the product

grid display).

■​ 5.3. Use a SaveFileDialog control to ask the user where to save

the .csv file.

■​ 5.4. If a filename is chosen, write the product data (including headers

like ProductID,ProductName,CurrentStock,SupplierName)

to the selected file in CSV format (comma-separated values). You can

manually build the string using StringBuilder and

File.WriteAllText or use a simple CSV helper library if allowed.

Include error handling for file writing.

●​ Deliverables:​

○​ Submit the complete Visual Studio project folder OR compiled executable +

necessary files.

© Ethnus 2025​ ​ ​ ​ Page 15​ ​ ​ ​ www.ethnus.com

http://www.ethnus.com

●​ Verification:

○​ Run the application.

○​ Verify Supplier CRUD works.

○​ Verify Product filtering by supplier and name works. Verify Product CRUD

works, including selecting a supplier.

○​ Verify recording an Inventory Transaction correctly inserts into

InventoryTransactions AND updates CurrentStock in Products.

Test both Receive and Ship. Verify the transaction rollback works if an error is

simulated (e.g., invalid ProductID during update - harder to force, but check

code structure).

○​ Verify Transaction history displays correctly.

○​ Verify the "Export Products to CSV" button correctly generates a CSV file

containing the filtered/displayed products with correct headers and data.

– End of Document –

© Ethnus 2025​ ​ ​ ​ Page 16​ ​ ​ ​ www.ethnus.com

http://www.ethnus.com

	
	
	
	
	IT Software Solutions for Business (ITSSB)​Test Projects
	ITSSB Test Projects
	College Level (2.5 hours)
	
	State Level (3.5 hours)
	
	National Level (5 hours)

